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ABSTRACT.

A robust differential homotopy procedure
is developed that is suitable for solving the
bordered block tridiagonal systems of non-
linear equations that result from liquid-
liguid extraction models. The procedure is
capable of readily utilizing newton, fixed-
point, and custom homotopy mapping. It is
shown to have an efficiency far superior to
Kubicek's method and comparable to that of
Rheinboldt. Application of the method to
liquid-liquid extraction cascade models re-
vealed that the newton homotopy would con-
verge to a solution as rapidly as a simul-
taneous correction procedure and that use of
a custom homotopy resulted in faster
convergence.

INTRODUCTION

Modeling procedures for hydrometallurgical solvent
extraction systems have received comparatively little

1" Author to whom correspondence should be addressed.
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attention in comparison to dual solvent systems egq.
[1,2] and systems employing quasichemical equilibrium
expressions [3,4]. The traditional approach has been to
capitalize on the linear form of the material balances,
and to include the equilibrium relations in them,
thereby reducing the system of equations by a factor of
two. The resulting set of equations (known as the sum-

of-the-rates or SR form) is then solved. Usually the
substitution has been for the organic phase species.
Thus only the aqueous phase species are found by
iteration. The techniques utilized to iterate the
resulting equation set to a solution include relaxation
followed by the newton method [5], the newton method
with damped iterates [6]}, and gquasi-newton procedures.
This paper focuses on use of the full equation set
(known as simultaneous convergence or the SC method)
combined with an alternate method of iteration.

Any multispecies multicascade model results in a
series of nonlinear equations that represent the
component material balances, equilibrium relationships,
and the energy balance. Grouping these balances by
stage results in the well known block tridiagonal
structure. If a global specification is included, the
additional equation and single variable are appended to
provide a bordered block tridiagonal structure. If the
cascades of stages are interlinked, additional off
diagonal matrices are included.

The method suggested by Stadtherr [7,8] is often
used to create a bordered block structure that is
simultaneously converged. A sequence of two interlinked
solvent extraction cycles results in such a system.
Without extensively elaborating, the results of others
[9] have shown that it is distinctly advantageous to
simultaneously converge cascade structures rather than
sequentially converge them. This is particularly
necessary for highly nonlinear systems. Ketchum [5]
found that it was necessary to combine damped Newton or
relaxation methods for the initial iterates with the
newton method to obtain convergence. The extraction
code, MATEX [10], is structured to allow the user to
specify a fixed number of relaxation iterates followed
by a quasi~newton hybrid method that combines the powell
and newton methods. The use of these combined methods is
to aid in solution of highly nonlinear problems.
Specifically, they condition the initial estimate so
that it lies within the region of convergence (domain of
attraction) of the solution.

Table 1 includes representative simultaneous
convergence procedures for solving solvent extraction
cascade separation problems. The procedure discussed by
Ricker et al.[12] is the most detailed model. In his
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Table 1.
CHARACTERISTICS OF SIMULTANEQUS CONVERGENCE
MODELS FOR EXTRACTION

o Single cascade models

0 McSwain & Durbin (1966) 1 solute transfer, no solute
(4] interactions, 2 concentrati-
ons per stage.

o Chapman (1978) Multiple solute transport
[11) for a hypothetical
hydrometallurical system
with two competing
reactions, 2 concentrations
per stage.

o Ricker, Nakashio & King Multiple solute transfer
(1981) [12]} with solute interactions,
4 concentrations per stage.

example 3, utilizing oxalic, succinic and malonic acids,
multiple solutes that compete for the same extractant
are included. However, the system has relatively minor
nonlinearities in comparison with those in
hydrometallurigical systems employing mass action

equilibrium expressions. Imaginary concentrations are
used to represent the base concentrations in the aqueous
phase.

An alternative approach to converge these problems
is to use a continuation method. Variously known as
differential homotopy, continuation, or parameter imbed-
ding, these procedures map from an initial solution to a
final nonlinear solution. They utilize a prediction or
prediction-correction method. They have been previously
applied to diffusion and reaction problems and
distillation. It is believed that this research
represents the first application of these methods to a
hydrometallurgical solvent extraction system.

HOMOTOPY CONTINUATION PROCEDURES

Mathematically steady, state hydrometallurgical
solvent extraction systems are represented as a set of
simultaneous nonlinear algebraic equations.
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fl(xl,xz,x3, PN xn) =
Ey(xprXpi%3s +nv X)) = 1y
f3(xl,x2,x4, . xn) = Iy (1)
fn(xl’XZ’x3' . xn) =,

These equations may be written in simplified form
as F(X) = R. Solution of these models requires
determination of the fixed points, or roots, of this
system of equations. (i. e. the values of X for which
F(X) = 0 ).

The classical and most widely used method for
solving these types of problems is Newtons method. Thisg
procedure operates by repeated solution of a linear
approximation to the problem. The basic formula for
Newtons method can be found in any text on numerical
analysis and is given by equation 2.

-1

aF
xE+L gk [-J R k = 1,2,... (2)
3X
aF
Where |—| represents the jacobian.
axX
r afl afl afl ]
axl ax2 axn
af, af, afz
aF ax, 9X ax
[__] _ 1 3% n (3
axX . .
{ afn afn afn
axl 8x2 axn i

An initial estimate of the solution, Xo, is made
aﬁglequatign 2 is repeated until the difference between
X and X~ is less than a desired tolerance. Newtons
method is intimately related to the topology of the
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system of eguations being solved. As such, local minima,
saddle points, cusps and other topological phenomena
will interfere with, and possibly prevent, convergence
of the technique. Methods which are not as intimately
related to the topology of the problem are necessary to
solve patheological problems or problems which do not
have good initial estimates of the solution. One such
method is called homotopy continuation.

Homotopy continuation procedures employ a series of
mapping functions labeled here as H,. ghe mapping
funcﬁion H., maps from the function Fe€R to the function
G eR". *

Hi:F er"” — GiERm where m > n ( 4 )

Examples of problems where m=3 and n=1 can be found
in Seydell(1979) [13). For the separation problems
considered here, however, the homotopy path is
consigered to beoa one,dimensional connected component
of H 7(0) from X° to X ( the solution of F(X) = 0).

! ( 5)

H,:F er” — g, er™
i i
The first mapping function of the sequence, Hg, is
structured such that the solution to G0 , Ga (0), Qs
readily apparent or easily obtainable.” The next map in
the sequence, H,, is then useglto map F onto G,. This
map is structur&d such that_¢,"(0) is_jclose" to
G, (0). The proximity of,G %0) to G,7(0) can be
exploited in obtaining G, (8). _If Gy (0) is
sufficiently close to G, (0), G, (0) can be expected
,with a high degree of %ertaint . to be within the
domain of attraction of,an iterative procedure such as
Newtons method ,with G, (0) as the initial estimate of

the solution, XO. Wyburn(1958),has proven that,there

exists a finite region about G, (0) in which G, (0) is
within the domain of attractiog of the Newton—ﬁaphson
iterative solution method. This procedure is repeated
uging a sequence of mapping_iunctions, H, Solutions to
G:~(0) are obtained using G; ,(0) to initiate the
sdlution procedure. The se u%nce, or homotopy, of map-
ping functions progress successively toward the mapping
function H_ which maps the functiop F onto itself. The
solution,to the original problem X can be obtained
using G (0) as the initial estimate of the solution.
The patﬂ_%y which the deformation progresses from GO(X)
to G_(X) is called the homotopy path. Homotopy
continuation is the numerical procedure by,which_ one
traces the one dimensional homotopy from X~ to X
Historical use of continuation methods for solution

of distillation, absorption, and stripping problems is
summarized in table 2.
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Table 2.
USE OF CONTINUATION PROCEDURES FOR
SOLUTION OF SEPARATION PROBLEMS

Reference Problem Algorithm
Characteristics
Salgovic et al. Absorption & Fixed stepsize, Euler
(1981) [26] Distillation predictor, Kubicek
algorithm
Byrne and Baird Stripping & Rheinboldt algorithm
(1983) [27) Distillation (1981)
Wayburn & Seader Distillation Euler predictor,
(1983, 1984) Newton corrector
(9, 28] (arclength)
Bhargava & Distillation Fixed step algorithm
Hlavacek (refined Kubicek
(1984) [29,30] algorithm)

Vickery & Taylor Distillation Custom Imbedding
(1985) [24]

Holland & Distillation Comparison of Euler

coworkers predictor Newton

(1985)(31] corrector with Gears
method, Michaelson
method.

MAPPING FUNCTIONS

The degree or extent of deformation of the map, H,
from the original function F(X) to G(X) is controlled by
the value of a parameter called the continuation
variable, t. The map is formed by incorporating the
continuation variable into the original set of
equations. It is incorpoBated in any convenient fashion
such that at one value, t~, the system of equations
(G,(X)) collapse to a set whose §olution can be easily
obgained and at another value, t*, the system solved
(G (X)) is identical to the original system of
equations. Alternately the mapping function can be
formed by using a generalized formula such as the one
given by equation 6.

H(X,t) = a(t)*F(X) + b(t)*G(X) = 0 ( 6)

This generalized formula can represent most of the
common homotopy forms used in separations (see table 2).
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It should be noted that Eq. 6 is strictly a mathematical
contrivance and is not related to any particular set of
equations and hence cannot specifically address the
nonlinear features of the problem under investigation.

There are three major types of homotopy equations
currently used. These are the Newton homotopy, the
fixed point homotopy and the affine homotopy. The
homotopy formula of Boggs{17] has also been widely
studied. The formula parameters for these equations are
given as follows:

Newton homotopy
H(X,t) = 0 = F(X) - F(x")xt (7))

Fixed point homotopy

H(X,t) = 0 = (1-t)*F(X) + t*(x-x°) (8)
Affine homotopy

H(X,t) = 0 = (1-t)*F(X) + t*[ii]*<x—x°> (9
Boggs homotopy .

H(X,t) = 0 = F(X) - e %F(x") ( 10 )

o € [01“’)

Kubicek, Holoniok, and Marek|[ 14 ) have studied the
use of other homotopy equations. At this time, however,
no specific class of homotopy equation has been shown
conclusively to be the most efficient.

All of the above homotopy equations begin the
mapping sequence with the continuation variable, t,
equal to one. At this point the equations collapse in
such a fashion that the solution at t = 1 is simply the
initial estimate of the solution. At a value of t = 0
the equations reduce to the original set of equations.
Each of the homotopy equations has different
characteristics and advantages. Because of its
structure the fixed point homotopy is gquaranteed a
unique solution at t = 1. This feature is valuable in
that it satisfies one of the conditions required to
guarantee that a connected solution set from the initial
estimate to the final solution exists
[Rheinboldt(1983)15]. Unfortunately this form of the
homotopy equation is very poorly scaled and may give
calculational difficulties during the course of the
mappings. The Newton homotopy, on the other hand, is
very well scaled. It does not, however, guarantee the
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existence of a unique solution at t = 1. The affine
homotopy equation represents an attempt to combines the
best aspects of both the Newton homotopy and the fixed
point homotopy. Like the fixed point homotopy, it is
structured such that a unigue solution is guaranteed to
exist at t = 1. The poor scaling characteristics of the
fixed point homotopy are corrected by the inclusion of a
scaling factor, here represented by the jacobian matrix.
The choice of homotopy formula has a strong effect on
the convergence characteristics of the problen.

THE ALGORITHM

The algorithm has two major sections these are the
integration procedure and the correction procedure. To
facilitate integration through bifurcation points,
(degenerate points) the integration procedure is carried
out with respect to the arc length of the solution set.
To prevent the jacobian matrix from becoming ill-
conditioned as bifurcations are encountered the variable
chosen as the continuation variable changes continuously
throughout the course of the integration. Approxima-
tions to the homotopy path are obtained using Eulers
method. The stepsize was calculated using a modifica-
tion of the method of Georg [16]. Improved control of
the stepsize is obtained by linking it to the number of
corrections required to converge on the path.

The correction procedure utilizes the standard
Newton-Raphson procedure to close on the homotopy curve.
If necessary the algorithm will converge the initial
estimates to the homotopy path before starting the
integration procedure. The corrections are made in the
hyperplane orthogonal to the tangent vector of the
homotopy path. Corrections for the first point ( if
necessary )} and for the solution are made in the
hyperplane of t = constant. In the event of failure of
the correction procedure the step size of the predicted
step is damped and another correction procedure
attempted. Repeated failure of the correction procedure
causes the integration to be reattempted from the
original starting point with more stringent controls on
the step length control parameters.

Numerous algorithms of this general type are
available in the literature. The algorithm developed
here has three distinguishing features. These are:

1. The ability to easily specify the type of homotopy
equation used. Options include the Newton homotopy,
the fixed point homotopy, Boggs homotopy [17], or a
user designed custom homotopy. The custom homotopy
is completely general and can be any homotopy
formula or arbitrary imbedding of the continuation
variable into all or some of the equations.
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2. The ability to custom tune the correction procedure
to the type of problem being solved. The control pa-
rameters of the correction procedure employed in the
algorithm are user specified. As such the curve
following procedure can be modified through
experimentation to efficiently handle problems
ranging from the most severe which require stringent
control over the correction procedure to well
behaved function where execution time can be greatly
reduced by relaxing some or all of the correction
parameters.

3. The ability to determine multiple solutions to
systems of equations. A user specified option is
available which upon successfully completing the
integration of the homotopy path will search for
other solutions to the problem by continuing the
integration past the boundary of the continuation
variable. While there is no guarantee that other
solutions, if they exist, will be found with this
procedure, it has been successfully demonstrated on
a wide range of problems.

AN EXAMPLE

The problem of Kubicek [18] represents the
dynamic behavior of a cascade cof two continuous
stirred tank reactors with recycle. First order
reactions occur in both reactors (See figure 1). A set
of four simultaneous ordinary differential equations is
used to describe this system.

dy &1
_ = (1—A)y2—yl+Dal(l—yl)exp-——~————
dt (1+¢1/Y)
d@l 4
— = (l—A)¢2—¢1+Da1B(l—yl)exp
dt (1+¢1/Y)
- B (8-t
Da, dy 3 (11)
__2 .—g_ = yl_y2+Da2 ( l_yz ) exp___}___
Dal dt (l+q’2/Y)
Da, d@z @2
—= —= = ¢ -¢,+Da,B(l-y,)exp——— - B,(%,-% _,)
Da, dt 1 "2 2 2 (1+@2/Y) 2' 72 Tc2

Here y is the reactant conversion, & is the
dimensionless temperature, and A€(0,1], v€[10,*},
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~r s~~~

1 - A

Figure 1. Linked CSTR’'s with recycle

Be[0,60], Dae[0,60}, ¥ [-5,2], and B&[0,3) are physical
parameters. Indices 1 and 2 correspond to reactors 1
and 2 respectively. 1In this example Da=Da =Da2, y=1000,
Ba22, & .=% .=0, B.=B,=2, A=1.0. To deterhine’the
dependaﬁée 8% the étegdy state solution on a parameter,
the equations are written as a set of simultaneous
algebraic egquations and are integrated using homotopy
continuation. The continuation variable is assigned to
the physical parameter that the solution set dependency
is to be examined. For steady state dependency,

i N S ) (12)

and equations (11) reduce to the following set of
algebraic equations ,

$

0 = (l—A)yz—y1+Dal(1—y1)exp————l———

(l+¢l/Y)

&
0 = (1—A)@2—61+DalB(l—y1)expm - ﬁl(él-(’cl)
(13)
7y
0 = yl-y2+Da2(1—y2)expm
%

0 = ¢l—¢2+Da2B(l—y2)exp?I:;;;:T B Bz(Qz-ch)

The solution curve for the dependency of this set
of equations on the recycle rate is given in figures 2,
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Figure 2. Homotopy Path Integration - Kubicek.

3, and 4. A comparison of the algorithm with two others
is shown in table 3. The results include a measure of
the CPU time for execution on a VAX 11,/780 system.

APPLICATION TO CASCADED SYSTEMS

The algorithm and formulas developed so far
have been applicable to general systems of equations.
Engineering and scientific applications however,
frequently deal with specialized systems of eguations.
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Rheinboldt
&Burkardt

(1983)

X, 10

Figure 3. Homotopy Path Integration - Rheinboldt.

One such system commonly encountered is structured from
models involving cascaded operations. Typical cascaded
operations are distillation and liquid-liquid
extraction. These operations form sets of equations
which have tridiagonal or block-tridiagonal jacobians
such as the one illustrated in figure 5. 1In an effort
to efficiently accommodate these systems the matrix
operations of the homotopy continuation method have been
optimized to take advantage of the special properties of
the system. Customization of the homotopy continuation
method involves two modifications of the general
homotopy procedure. These are,
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this work

0 .05
A

Figure 4. Homotopy Path Integration - This Work.

1. Exploitation of the sparcity of the jacobian. The
sparcity of the matrix is utilized to reduce both the
computational load of the program as well as its storage
requirements. The reduction of the computational load
is accomplished in two ways. The first involves
eliminating the calculation of partial derivatives for
elements which are known to be zero. The second
involves utilizing a modified version of gaussian
elimination developed by (Thomas{19], Newman[20]) to
solve the system. Savings in storage requirements are
achieved by not storing the off diagonal elements of the
jacobian.
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*
: Total CPU
. Steps Function : ;
Algorithm : ; Jacobian time
Required |Evaluations Evaluations nsec
Algorithm
502 209 2358 1572 2670
Kubicek
(1976)
Algorithm
596 61 1410 201 5150
Rheinboldt
(1983)
this work 37 1307 175 2890

* All calculations are performed in double precision on
a VAX 11,/780 computer.

The modified gaussian elimination procedure
developed by Thomas is applicable to tridiagonal or
block tridiagonal systems. Both the calculation of the
Euler estimation of the homotopy curve and the
calculation of the correction to the homotopy curve
require that the original system be inflated to a higher
dimension and an extra equation be supplemented to the
system to make it determinant. This destroys the
tridiagonal nature of the jacobian thereby preventing
direct use of the Thomas algorithm. Investigation of
the structure of the modified system of equations
reveals that the jacobian is structured such that the
system is bordered block tridiagonal. A generalized
form of the jacobian matrix for homotopy continuation
systems is given in fiqure 7. To exploit the sparcity
of this structure, a modification of the standard Thomas
algorithm was written. This modification extends the
gaussian elimination procedure, developed by Thomas, to
include the presence of the border elements in the
matrix. Like the Thomas algorithm, it optimizes the
elimination of this form of the jacobian by not storing
elements known to be zero, not performing unnecessary
elimination calculations, and not calculating the
partial derivatives of elements whose elements are known
to be zero. Combined, these modifications greatly
reduce the computational load and the storage necessary
to solve the bordered block tridiagonal systems found in
homotopy continuation solution of separation problems.
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By < v, E,
Ay By g, v, E,
A3 B3 C3 vy Ey
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Ap-1 Bn-1 h-1 vy Ey
An Bn vn En

Figure 5.

Structure of Jacobian Matrix for Block Tridiagonal
Systems j=n-1

Bl Cl Dl Vl El
Az B, ) Pal V2 )
I L

] Bn-1 Car P4 |V By

An Bn Dﬂ vn En

vm Em

Figure 6. Structure of Jacobian for Cascaded Systems
Including an Artificial Imbedding Parameter.
i =n-1, m=n+ 1
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T - S
Bl Cl D Vl El

b B, ¢, D2l |Va E;

. - r— N 1

] )_T

Ap1 Ba-1 Ca-1 Dj vj Ej

An Bn Dn Vn En

S , Sy I C e Sn-1 Sy Cn Vo En

Figure 7. Bordered Block Tridiagonal System
j=n-1, m=mn+1

] [0 ]
By & oyl Y2 0
1 — e
0
A, B, c, o, |v, :
}—— — 1
. ) . . - . *g
] .
By Bh1 -1 P35 |V 0
0
A, B, (0| {Va :
1

T
FBr--o l 0 .- o! 0.0 foatofo--0fol [v,

Figure 8. Bordered Block Trigiagonaﬁ System Utilizing
The Natural Basis Vectors e and e fgr the G and E
Vectors Respectively. m=n + 1, j =n - 1
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2. Preservation of bordered Block tridiagonal form.
The general homotopy procedure automatically changes the
variable used as the continuation variable at each step
along the homotopy path. This is done in an effort to
avoid numerical instability brought about by the
increasingly singular nature of the jacobian as
bifurcation points are crossed. T is is accomplished by
supplementing the jacobian with e (i is the iﬂgix of
the local continuation variable) and choosing e as
the residual vector., The structure of this matrix is
given in figure 8. At this point most general
algorithms simplify the matrix to an n by n system.
This is accomplished by eliminating the column of the
continuation variable and then switching the columns of
the matrix to orient the local continuation variable
such that it has the last index of the string. Figqures
9 and 10 illustrate these forms of the matrix. The
dependency of the system on the continuation is isolated
and the system is treated as a standard n by n system.
For general system of equations, with dense jacobians,
this process poses no computational problems. For
separation systems, however, this procedure destroys the
tridiagonal nature of the jacobian. Elimination
procedures for systems such as this are complicated
because as the index of the continuation variable
changes the structure of the resultant matrix also
changes. This greatly complicates efficiently solving
the system and prohibits usage of the modified Thomas
algorithm. To allow the use of the modified Thomas
algorithm, the bordered block tridiagonal structure of
the system must be preserved. This is easily
accomplished by not "simplifying" the problem by
reducing it to an n by n system. Instead the full
bordered block tridiagonal form given by figure 7 is
used to calculate the tangent vector. As stated
previously, efficient modifications of the Thomas
algorithm have been developed in this work to solve
bordered block tridiagonal systems. For the prediction
jacobian, further simplifications are made by
exploiting the known form of the residual vector.
Realizing that the residual vector is known to be the
natural basis vector of index n+l, the forward
substitution of this system is not performed on the
residual vector.

APPLICATION TO EXTRACTION CASCADES

The problem chosen for detailed analysis is found
as an example in Nuclear Chemical Engineering by
Benedict, Pigford and Levi [21]. The problem is the
separation of zirconium from hafnium discussed by Huré&
and Saint James [22]. A zirconium fraction recovery of
.98 and a decontamination factor of zirconium from
hafnium of 200 are desired in the extract stream.
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Bordered Block System
0 0
Bl Ci Dl 0 Vl “
] 0
A B 0 0
C D,]|- v .
2
2 2 2|4 2 0
; — —
N-1 . . . . N *E
elements/}sﬁ . . . .
N elements — . - . . - - .
T A L—__—i—' L
N o1 - 0 7 } S
elements An—l Bn—l Cn—l Dj 0 elem Bj
v N
0 n Zelem
N elements Al B p | | Al
n n n 0 v An
.—'._Am
Lo -0 Io .o 0 Io -0 lo--0]lo0--0]Jo |1 vl -1
m L] __J

Figure 10. Switching Columns of the Block
Tridiagonal System
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Interlinked extraction and scrubbing cascades are used
to accomplish this task. The solution proposed by
Benedict, Pigford and Levi tears all the material
balances in each cascade individually. The material
balance condition around the feed stage is not met in
their analysis.

The feed for the column consists of 3.5M NaNO,,
3.0M HNO,, .123M Zr(NOy),, and .00246M HE(NO,),. The
scrubbina section has ;n aqueous feed of 3.0é éNO and
3.5M NaNO,. The extraction section receives an o%ganic
feed contgining 2.25M TBP and 1.6M HNO,. The volume of
organic feed is 100 liters and the aquéous feeds are
both 48 liters. The problem is illustrated in figure
11.

The process chemistry of this problem is given in
figure 12. Three highly nonlinear mass action equilib-
ria are required to describe this system. Unlike most
other solution procedures, a simultaneous convergence
scheme without scaling, artificial parameters, and
special treatment converges rapidly to a solution
(0’Quinn & VanBrunt [(23]). In this work, continuation
methods are applied to the same problem.

3.0M HNO
3 [} = 0.98
3.5M NaNO3 —7de ZE - 200.
48.0 liters r/H
3.0M HNO3
3.5M NaNO3
0.123M Zr
0.00246M HE
48.0 liters
2.25M TBP
1.60M HNO3

100. liters

Figure 11. Zr/Hf Column
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H?aq)+ NO3(aq)* TBP (o) = mNoj-TBP |
K, = 0.145
Zr?;q)+ 4Nog(aq)+ 2TBP ;;ﬁi Zr(NO3)4-2TBP(°)
K, = 0.0032
Hf?;q)+ 4NOG o)t 2TBR(,) == HE(NO),-2TBP
Kyg = 0.00032
Aqueous Organic
_Phase _Phase
HY,Na” HNO, + TBP
2t ued Zr(NOy) ,2TBP
NO3 HE(NO,) - 2TBP
TBP
Figure 12.

Mass Action Equilibria for zZr/Hf Problem.

The results are shown in table 4. They indicate
the efficiency of the continuation procedure over a
simultaneous convergence method. The newton homotopy
converged to the solution quicker and without scaling to
prevent negative iterates. The fixed point homotopy
diverged, even though the initial iterate was on a path,
that path did not have a zero. Excellent results were
obtained with custom imbedding procedures. It is
believed that these results indicate the first time that
a separation process has been converged with a
continuation method at a rate comparable to a newton
procedure.

Following Vickery and Taylor [24], the nonlinear
term that represents the equilibrium can be gradually
introduced exponentially( see equation 14). The
physical reasoning for introducing the nonlinearity in
this manner is that initially the solutes are introduced
linearly into an organic phase that is equilibrated with
the acid. The nonlinearity is gradually introduced.

4 2 t

NO3yTBP) 0 t e [0,1) (14)

Yz~ K Xz (%
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Table 4.
Zr — Hf SOLUTION COMPARISON

Method of Solution Number of Newton
Steps Corrections
SC Linearization 5

SC linearization damped

to prevent negative 11
concentrations
Newton homotopy 1 4
Fixed point homotopy failed to

converge
Custom homotopy % 1 1 4
Custom homotopy # 2 1 3

Specifically limiting the imbedding to the
extractant scolution concentration had the most profound
effects. The resulting solution procedure is imbedded
with the process chemistry. That is the imbedding is
according to the extent to which the extractant is
combined to form each metal complex.

4 2t

zr xN03YTBP

- K x = 0 te(0,1] (15)

Yy,

Not only did the procedure converge most rapidly;
but also the physical chemistry was brought into the
solution process. Solution from a wide range of starting
points were examined. In each case, the procedure that
represented the process chemistry appeared to be the
most efficient.

In the specification problem described by O’Quinn
and Van Brunt [23] a region of reduced convergence was
obtained for a SC linearization. Using the
continuation procedure, convergence to the solution was
obtained from a point outside the domain of attraction
of newton’s method. 1In other words convergence was
attained from a starting point from which other methods
would diverge.

In summary, the method outlined here can be
contrasted with an SC linearization. First, the
procedure can obtain multiple solutions, if they exist.
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Second, solution can be obtained from an area outside
the domain of convergence of an SC method. Third, the
procedure is capable of converging as rapidly or more
rapidly than an SC method. And fourth, the procedure is
able to include the process chemistry of metal
complexation in the solution process. All of these
advantages have been illustrated by the solution
behavior given in table 4 and discussed above.

The Purex chemistry described by Jubin [25])
suggests a similar custom homotopy mapping to the one
outlined above. Particularly, if the distribution maps
given for this system are examined in detail, the
linearity of the nitric acid concentration is markedly
different from the nonlinear metal chemistry. This
effect is most noted at low metal concentrations.

2+

- > .
U053 T+ 2NO3+ 2TBP = UO,(NO;),-"2TBP K
pul*sanog+ 2mBR = u(NOg),*2TBP Ky
(16)
+ - .
H'+ NO; + TBP = HNO, - TBP Kyq
+ - 3
H'+ NOJ + 2TBP —> HNO, - 2TBP Kyo
The custom homotopy mapping suggested by Purex
chemistry is
2 2(1-t)
Yy ~ KUXUXNogTBP =0
4 2(1-t) _
Ypus ~ Rpug *pua*no,YTBP = 0 tell,o0]
(17)
2(1-t) _
Y2 ~ KHZXHXNO3YTBP =0
CONCLUSION

This work developed a robust continuation method
useful for separation problems. Successful application
to the solution of hydrometallurgical separations
revealed that the procedure is capable of converging
more rapidly than a simultaneous convergence procedure.
Customized procedures based on the solution chemistry
were utilized in the most efficient calculation method.
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NOMENCLATURE

arbitrary function
arbitrary function
Damk8hler number

the natural basis vector
arbitrary function vector
dependant variable
dependant variable vector
deformed function, F
homotopy function
homotopy function vector
residual

residual vector
continuation variable
independent variable

independent variable vector

reactant concentration
ripts

- parameter number
- number of equations

- arbitrary parameter number

scripts

iteration number

the inverse function
initial value

final value

denotes lack of column or element k

number of equations

dimensionless temperature
partial differentiation
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