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V. VAN BRUNT 
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COLUMBIA, SOUTH CAROLINA 2 9 2 0 8  

ABSTRACT. 

A robust differential homotopy procedure 
is developed that is suitable for solving the 
bordered block tridiagonal systems of non- 
linear equations that result from liquid- 
liquid extraction models. The procedure is 
capable of readily utilizing newton, fixed- 
point, and custom homotopy mapping. It is 
shown to have an efficiency far superior to 
Kubicek’s method and comparable to that of  
Rheinboldt. Application of the method to 
liquid-liquid extraction cascade models re- 
vealed that the newton homotopy would con- 
verge to a solution as rapidly as a simul- 
taneous correction procedure and that use of 
a custom homotopy resulted in faster 
convergence. 

INTRODUCTION 

Modeling procedures for hydrometallurgical solvent 
extraction systems have received comparatively little 

1 Author to whom correspondence should be addressed. 
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244 F R A N T Z  AND VAN B R U N T  

attention in comparison to dual solvent systems eg. 
[1,2] and systems employing quasich,emical equilibrium 
expressions [3,41. The traditional approach has been to 
capitalize on the linear form of the material balances, 
and to include the equilibrium relations in them, 
thereby reducing the system of equations by a factor of 
two. The resulting set of equations (known as the sum- 
of-the-rates or SR form) is then solved. Usually the 
substitution has been for the organic phase species. 
Thus only the aqueous phase species are found by 
iteration. The techniques utilized to iterate the 
resulting equation set to a solution include relaxation 
followed by the newton method [5], the newton method 
with damped iterates [ 6 1 ,  and quasi-newton procedures. 
This paper focuses on use of the full equation set 
(known as simultaneous convergence or the SC method) 
combined with an alternate method of iteration. 

Any multispecies multicascade inodel results in a 
series of nonlinear equations that represent the 
component material balances, equilibrium relationships, 
and the energy balance. Grouping these balances by 
stage results in the well known b l o c k  tridiagonal 
structure. If a global specification is included, the 
additional equation and single variable are appended to 
provide a bordered block tridiagonal structure. 1f the 
cascades of stages are interlinked, additional off 
diagonal matrices are included. 

used to create a bordered block structure that is 
simultaneously converged. A sequence of two interlinked 
solvent extraction cycles results in such a system. 
Without extensively elaborating, the results of others 
191 have shown that it is distinctly advantageous to 
simultaneously converge cascade structures rather than 
sequentially converge them. This is particularly 
necessary for highly nonlinear systems. Ketchum [5] 
found that it was necessary to combine damped Newton or 
relaxation methods for the initial iterates with the 
newton method to obtain convergence. The extraction 
code, MATEX [lo], is structured to allow the user to 
specify a fixed number of relaxation iterates followed 
by a quasi-newton hybrid method that combines the powell 
and newton methods. The use of these combined methods is 
to aid in solution of highly nonlinear problems. 
Specifically, they condition the initial estimate s o  
that it lies within the region of convergence (domain of 
attraction) of the solution. 

The method suggested by Stadtherr [ T I E ]  is often 

Table 1 includes representative simultaneous 
convergence procedures for solving solvent extraction 
cascade separation problems. The procedure discussed by 
Ricker et a1.[12] is the most detailed model. In his 
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INTERLINKED SOLVENT EXTRACTION CASCADES 245 

Table 1. 
CHARACTERISTICS OF SIMULTANEOUS CONVERGENCE 

MODELS FOR EXTRACTION 

o Single cascade models 

o McSwain & Durbin (1966) 1 solute transfer, no solute 
[ 4 1  interactions, 2 concentrati- 

ons per stage. 

o Chapman (1978) 
[Ill 

Multiple solute transport 
for a hypothetical 
hydrometallurical system 
with two competing 
reactions, 2 concentrations 
per stage. 

o Ricker, Nakashio & King Multiple solute transfer 
(1981) t 1 2 1  with solute interactions, 

4 concentrations per stage. 

example 3, utilizing oxalic, succinic and malonic acids, 
multiple solutes that compete for the same extractant 
are included. However, the system has relatively minor 
nonlinearities in comparison with those in 
hydrometallurigical systems employing mass action 
equilibrium expressions. Imaginary concentrations are 
used to represent the base concentrations in the aqueous 
phase. 

is to use a continuation method. Variously known as 
differential homotopy, continuation, or parameter imbed- 
ding, these procedures map from an initial solution to a 
final nonlinear solution. They utilize a prediction or 
prediction-correction method. They have been previously 
applied to diffusion and reaction problems and 
distillation. It is believed that this research 
represents the first application of  these methods to a 
hydrometallurgical solvent extraction system. 

An alternative approach to converge these problems 

HOMOTOPY CONTINUATION PROCEDURES 

Mathematically steady, state hydrometallurgical 
solvent extraction systems are represented as a set of 
simultaneous nonlinear algebraic equations. 
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246 F R A N T Z  AND VAN BRUNT 

1 
2 

fl(x1,x2,x3, ... x 1 = r 
f2(x1,x2,x3, ... x ) = r 

n 
r\ 

f3(X1,X2,X4I - - .  xr,) = r3 (1) 

. . .  

These equations may be written in simplified form 
as F ( X )  = R. Solution of these models requires 
determination of the fixed points, or roots, of this 
system of equations. (i. e. the values of X for which 
F ( X )  = 0 ) .  

The classical and most widely used method for 
solving these types of problems is Newtons method. This 
procedure operates by repeated solution of a linear 
approximation to the problem. The basic formula for 
Newtons method can be found in any text on numerical 
analysis and is given by equation 2. 

Where [E) represents the jacobian. 
lax) 

[3 = 

- afl 

- af2 

axn 

. . .  
axn 

. . .  

axn 

( 3 )  

0 An initial estimate of the solution, X , is made 
aRqlequatitn 2 is repeated until the difference between 
X and X is less than a desired tolerance. Newtons 
method is intimately related to the topology of the 
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INTERLINKED SOLVENT EXTRACTION CASCADES 24 7 

system of equations being solved. As such, local minima, 
saddle points, cusps and other topological phenomena 
will interfere with, and possibly prevent, convergence 
of the technique. Methods which are not as intimately 
related to the topology of the problem are necessary to 
solve patheological problems o r  problems which do not 
have good initial estimates of the solution. One such 
method is called homotopy continuation. 

mapping functions labeled here as Hi. 
funchion Hi, maps from the function FER 
GiQR . 

Homotopy continuation procedures employ a series of 

to the function 
T;he mapping 

Hi:F E R ~  - -+ Gi€Rm where m > n ( 4 ) 

Examples of problems where m=3 and n=l can be found 
in Seydell(1979) [13]. For the separation problems 
considered here, however, the homotopy path is 
consiqered to beOa one,dimensional connected component 
of H- (0) from X to X ( the solution of F(X) = 0 ) .  

H.:F ERn -+ G.ERnfl 1 ( 5 )  

The first mapping function of the sequefce, H is 
structured such that the solution to Go , Go ( 0 1 ,  9 s  
readily apparent o r  easily obtainable. The next map in 
the sequence, H , is then use_dlto map F onto G This 

:%'(O). 
exploited in obtaining s1 ( 8 ) .  
sufficiently close to G ( O ) ,  G- (0) can be expected 
,with a high degree of Eertaintb, to be within the 
domain of attraction ozlan iterative procedure such as 
Newtons method Owith Go (0) as the initial estimate of 
the solution, X . Wyburn(195811has proven thatlthere 
exists a finite region about G ( 0 )  in which G ( 0 )  is 
within the domain of attractioa of the Newton-Raphson 
iterative solution method. This procedure is repeated 
usfng a sequence of mapping functions, H.. 
G: ( 0 )  are obtained using GT ( 0 )  to inihiate the 
sblution procedure. The se&dnce, or homotopy, of  map- 
ping functions progress successively toward the mapping 
function Hn which maps the functioa F onto itself. The 
solutioclto the original problem X 
using G (0) as the initial estimate of the solution. 
The patR-hy which the deformation progresses from GO(X) 
to G (X) is called the homotopy path. Homotopy 
cont?nuation is the numerical procedure byowhich,one 
traces the one dimensional homotopy from X to X . 
HiStOKiCal use of continuation methods for solution 
of distillation, absorption, and stripping problems is 
summarized in table 2 .  

is structurhd such that-? ( 0 )  is-jclose" 

If G~ ( 0 )  is 
The proximity o Z I G  t o )  to G1 ( 0 )  can be 

Solutions to 

can be obtained 
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248 FRANTZ AND VAN BRUNT 

Table 2. 

Reference 

USE OF CONTINUATION PROCEDURES FOR 
SOLUTION OF SEPARATION PROBLEMS -_ - 

Salgovic et al. 
(1981) [26] 

Byrne and Baird 
(1983) [271 

Wayburn & Seader 
(1983, 1984) 

[ 9 r  281 

Bhargava & 
H1 avace k 
(1984) [29,30] 

Vickery & Taylor 

Holland & 
coworkers 
(1985)[31] 

(1985) [24] 

Problem Algorithm 
Characteristics 

Absorption & Fixed stepsize, Euler 
Distillation predictor, Kubicek 
a1 go r i thm 

Stripping & Rheinboldt algorithm 
Distillation (1981) 

Distillation Euler predictor, 
Newton corrector 
(arclength) 

(refined Kubicek 
algorithm) 

Distillation Fixed step algorithm 

Distillation Custom Imbedding 

Distillation Comparison of Euler 
predictor Newton 
corrector with Gears 
method, Michaelson 
method. 

MAPPING FUNCTIONS 

The degree or extent of deformation of the map, H, 
from the original function F(X) to G(X) is controlled by 
the value of a parameter called the continuation 
variable, t. The map is formed by incorporating the 
continuation variable into the original set of 
equations. 
such that at one value, t , the system of equations 
(G (X)) collapse to a set whose folution can be easily 
obeained and at another value, t , the system solved 
( G  (X)) is identical to the original system of 
eqnations. Alternately the mapping function can be 
formed by using a generalized formula such as the one 
given by equation 6. 

It is incorpo6ated in any convenient fashion 

H(X,t) = a(t)*F(X) + b(t)*G(X) = 0 ( 6 )  

This generalized formula can represent most of the 
common homotopy forms used in separations (see table 2). 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
1
3
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



INTERLINKED SOLVENT EXTRACTION CASCADES 249 

It should be noted that Eq. 6 is strictly a mathematical 
contrivance and is not related to any particular set of 
equations and hence cannot specifically address the 
nonlinear features of the problem under investigation. 

There are three major types of homotopy equations 
currently used. These are the Newton homotopy, the 
fixed point homotopy and the affine hornotopy. The 
homotopy formula of Boggs[l7] has also been widely 
studied. The formula parameters for these equations are 
given as follows: 

Newton homotopy 

( 7 )  0 H(X,t) = 0 = F(X) - F(X )*t 

Fixed point homotopy 

( 8 )  0 H(X,t) = 0 (l-t)*F(X) + t*(X-X ) 

Affine homotopy 

( 9 )  
0 H(X,t) = 0 = (l-t)*F(X) + t* - "(X-X ) [::I 

Boggs homotopy 

H(X,t) = 0 = F(X) - e-aF(Xo) ( 1 0  1 

a E [ O , m )  

Kubicek, Holoniok, and Marek[ 14 ] have studied the 
use of other homotopy equations. At this time, however, 
no specific class of homotopy equation has been shown 
conclusively to be the most efficient. 

All of the above homotopy equations begin the 
mapping sequence with the continuation variable, t, 
equal to one. At this point the equations collapse in 
such a fashion that the solution at t = 1 is simply the 
initial estimate of the solution. At a value of t = 0 
the equations reduce to the original set of equations. 
Each of the homotopy equations has different 
characteristics and advantages. Because of its 
structure the fixed point homotopy is guaranteed a 
unique solution at t = 1. This feature is valuable in 
that it satisfies one of the conditions required to 
guarantee that a connected solution set from the initial 
estimate to the final solution exists 
[Rheinboldt(l983)15]. Unfortunately this form of the 
homotopy equation is very poorly scaled and may give 
calculational difficulties during the course of the 
mappings. The Newton homotopy, on the other hand, is 
very well scaled. It does not, however, guarantee the 
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250 FRANTZ AND VAN BRUNT 

existence of a unique solution at t = 1. The affine 
homotopy equation represents an attempt to combines the 
best aspects of both the Newton homotopy and the fixed 
point homotopy. Like the fixed point homotopy, it is 
structured such that a unique solution is guaranteed to 
exist at t = 1. The poor scaling characteristics of the 
fixed point homotopy are corrected by the inclusion of a 
scaling factor, here represented by the jacobian matrix. 
The choice of homotopy formula has a strong effect on 
the convergence characteristics of the problem. 

THE ALGORITHM 

The algorithm has two major sections these are the 
integration procedure and the correction procedure. To 
facilitate integration through bifurcation points, 
(degenerate points) the integration procedure is carried 
out with respect to the arc length of the solution set. 
To prevent the jacobian matrix from becoming ill- 
conditioned as bifurcations are encountered the variable 
chosen as the continuation variable changes continuously 
throughout the course of the integration. Approxima- 
tions to the homotopy path are obtained using Eulers 
method. The stepsize was calculated using a modifica- 
tion of the method of Georg [16]. Improved control of 
the stepsize is obtained by linking it to the number of  
corrections required to converge on the path. 

The correction procedure utilizes the standard 
Newton-Raphson procedure to close on the homotopy curve. 
If necessary the algorithm will converge the initial 
estimates to the homotopy path before starting the 
integration procedure. The corrections are made in the 
hyperplane orthogonal to the tangent vector of the 
homotopy path. Corrections for the first point ( if 
necessary ) and for the solution are made in the 
hyperplane of t = constant. In the event of failure of 
the correction procedure the step size of the predicted 
step is damped and another correction procedure 
attempted. Repeated failure of the correction procedure 
causes the integration to be reattempted from the 
original starting point with more stringent controls on 
the step length control parameters. 

Numerous algorithms of this general type are 
available in the literature. The algorithm developed 
here has three distinguishing features. These are: 
1. The ability to easily specify the type of homotopy 

equation used. Options include the Newton homotopy, 
the fixed point homotopy, Boggs homotopy [171, or a 
user designed custom homotopy. The custom homotopy 
is completely general and can be any homotopy 
formula or arbitrary imbedding of the continuation 
variable into all or some of the equations. 
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INTERLINKED SOLVENT EXTRACTION CASCADES 251 

2. The ability to custom tune the correction procedure 
to the type of problem being solved. The control pa- 
rameters of the correction procedure employed in the 
algorithm are user specified. As such the curve 
following procedure can be modified through 
experimentation to efficiently handle problems 
ranging from the most severe which require stringent 
control over the correction procedure to well 
behaved function where execution time can be greatly 
reduced by relaxing some or all of the correction 
parameters. 

systems of equations. A user specified option is 
available which upon successfully completing the 
integration of the homotopy path will search for 
other solutions to the problem by continuing the 
integration past the boundary of  the continuation 
variable. While there is no guarantee that other 
solutions, if they exist, will be found with this 
procedure, it has been successfully demonstrated on 
a wide range of  problems. 

3 .  The ability t o  determine multiple solutions to 

AN EXAMPLE 

The problem of Kubicek [18] represents the 
dynamic behavior of a cascade of two continuous 
stirred tank reactors with recycle. First order 
reactions occur in both reactors (See figure 1). A set 
of four simultaneous ordinary differential equations is 
used to describe this system. 

Here y is the reactant conversion, @ is the 
dimensionless temperature, and Ae(O,lI, y ~ [ l O , m ) ,  
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252 FRANTZ AND V A N  BRUNT 

I 

1 - A  

Figure 1. Linked CSTR's with recycle 

8 ~ [ 0 , 6 0 1 ,  Daf[0,60], Q ~[-5,2], and F j f [ O f 3 ]  are physical 
parameters. 
and 2 respectively. In this example Da=Da =Da2, y = l O O O ,  
B=22, Q = Q  = O f  Fj -f3 -2, A-1.0.  To deterkine the 
dependafihe 83 the htegdy state solution on a parameter, 
the equations are written as a set of  simultaneous 
algebraic equations and are integrated using homotopy 
continuation. The continuation variable is assigned to 
the physical parameter that the solution set dependency 
is to be examined. For steady state dependency, 

Indices lCand 2 correspond to reactors 1 

and equations (11) reduce to the following set of 
algebraic equations , 

Q. 
0 

% - f3 ( Q  -0 o = Q -0 +Da2B(1-y2)exp 2 2 c2) 1 2  ( 1+Q2/Y) 

The solution curve for the dependency of  this set 
of equations on the recycle rate is given in figures 2, 
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Kubicek 

( 1  976) 

.6 - 

.5 - 

.4  - 

. 3  - 

.2 - 

.1 - 

j 
100 

120 i 
0 
0 .05 

A 

Figure 2. Homotopy Path Integration - Kubicek. 

3, and 4 .  A comparison of the algorithm with two others 
is shown in table 3. The results include a measure of 
the CPU time for execution on a VAX 11/780 system. 

APPLICATION TO CASCADED SYSTEMS 

The algorithm and formulas developed so far 
have been applicable to general systems of equations. 
Engineering and scientific applications however, 
frequently deal with specialized systems of equations. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
1
3
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



2 5 4  FRANTZ AND VAN BRUNT 

Rheinboldt 
&Burkardt 

( 1  983) 

x *  
F . C  

. s  

.I 

C 

f 5  

.05 
n 

Figure 3 .  Homotopy Path Integration - Rheinboldt. 

One such system commonly encountered is structured from 
models involving cascaded operations. Typical cascaded 
operations are distillation and liquid-liquid 
extraction. These operations form sets of equations 
which have tridiagonal or block-tridiagonal jacobians 
such as the one illustrated in figure 5. In an effort 
to efficiently accommodate these systems the matrix 
operations of the homotopy continuation method have been 
optimized to take advantage of  the special properties of 
the system. Customization of the homotopy continuation 
method involves two modifications of the general 
homotopy procedure. These are, 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
1
3
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



INTERLINKED SOLVENT EXTRACTION CASCADES 255 

t h i s  w o r k  

Figure 4 .  Homotopy Path Integration - This Work. 

1. Exploitation of the sparcity of the jacobian. The 
sparcity of the matrix is utilized to reduce both the 
computational load of the program as well a s  its storage 
requirements. The reduction of the computational load 
is accomplished in two ways. The first involves 
eliminating the calculation of partial derivatives for 
elements which are known to be zero. The second 
involves utilizing a modified version of gaussian 
elimination developed by (Thomas[l9], Newman[201) to 
solve the system. Savings in storage requirements are 
achieved by not storing the o f f  diagonal elements of the 
jacobian. 
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Function 
Evaluations 

F R A N T Z  A N D  VAN B R U N T  

Total CPU* 
time 
msec 

Jacobian 
Evaluations 

TABLE 3 Algorithm Performance Comparison 

1410  

1307  

Algorithm 

2 0 1  5150 

1 7 5  2890 

Algorithm 
502 

Kubicek 
( 1 9 7 6 )  

A1 go r i thm 
596 

Rheinboldt 
( 1 9 8 3 )  

this work 

Steps 
Required 

209 

6 1  

37 

* All calculations are 
a VAX 11/780 computer. 

2358 I 1572 I 2670 

performed in double precision on 

The modified gaussian elimination procedure 
developed by Thomas is applicable to tridiagonal or 
block tridiagonal systems. Both the calculation of the 
Euler estimation of the homotopy curve and the 
calculation of the correction to the homotopy curve 
require that the original system be inflated to a higher 
dimension and an extra equation be supplemented to the 
system to make it determinant. This destroys the 
tridiagonal nature of the jacobian thereby preventing 
direct use of the Thomas algorithm. Investigation of 
the structure of the modified system o f  equations 
reveals that the jacobian is structured such that the 
system is bordered block tridiagonal. A generalized 
form of the jacobian matrix for homotopy continuation 
systems is given in figure 7 .  To exploit the sparcity 
of this structure, a modification of the standard Thomas 
algorithm was written. This modification extends the 
gaussian elimination procedure, developed by Thomas, to 
include the presence of the border elements in the 
matrix. Like the Thomas algorithm, it optimizes the 
elimination of this form of the jacobian by not storing 
elements known to be zero, not performing unnecessary 
elimination calculations, and not calculating the 
partial derivatives of elements whose elements are known 
to be zero. Combined, these modifications greatly 
reduce the computational load and the storage necessary 
to solve the bordered block tridiagonal systems found in 
homotopy continuation solution of separation problems. 
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INTERLINKED SOLVENT EXTRACTION CASCADES 25 7 

1 -  7 

Figure 5. 
Structure of Jacobian Matrix for Block Tridiagonal 

Systems j = n - 1 

I 

c1 I 

Figure 6. structure of Jacobian for Cascaded Systems 
Including an Artificial Imbedding Parameter. 

j - n - l , m = n +  1 
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Figure 7. Bordered Block Tridiagonal System 
j = n - 1, m = n + 1 

. -  

I 0 * .  0 1 0 * .  0 I 0 * .  0 I 0.1'.0 1 0 a. 0 \ o m ]  

. * 5  8 
Figure 8. Bordered Block Triqiagonaft System Utilizing 
The Natural Basis Vectors e and e for the G and E 

Vectors Respectively. m = n + 1, j = n - 1 
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2 .  Preservation of bordered Block tridiagonal form. 
The general homotopy procedure automatically changes the 
variable used as the continuation variable at each step 
along the homotopy path. This is done in an effort to 
avoid numerical instability brought about by the 
increasingly singular nature of the jacobian as 
bifurcation points are crossed. 
supplementing the jacobian with e 
the local continuation variable) and choosing e as 
the residual vector. The structure of this matrix is 
given in figure 8. At this point most general 
algorithms simplify the matrix to an n by n system. 
This is accomplished by eliminating the column of the 
continuation variable and then switching the columns of 
the matrix to orient the local continuation variable 
such that it has the last index of the string. Figures 
9 and 10 illustrate these forms of the matrix. The 
dependency of the system on the continuation is isolated 
and the system is treated as a standard n by n system. 
For general system of equations, with dense jacobians, 
this process poses no computational problems. For 
separation systems, however, this procedure destroys the 
tridiagonal nature of the jacobian. Elimination 
procedures for systems such as this are complicated 
because as the index of the continuation variable 
changes the structure of the resultant matrix also 
changes. This greatly complicates efficiently solving 
the system and prohibits usage of the modified Thomas 
algorithm. To allow the use of the modified Thomas 
algorithm, the bordered block tridiagonal structure of 
the system must be preserved. This is easily 
accomplished by not "simplifying" the problem by 
reducing it to an n by n system. Instead the full 
bordered block tridiagonal form given by figure 7 is 
used t o  calculate the tangent vector. As stated 
previously, efficient modifications of the Thomas 
algorithm have been developed in this work to solve 
bordered block tridiagonal systems. For the prediction 
jacobian, further simplifications are made by 
exploiting the known form of the residual vector. 
Realizing that the residual vector is known t o  be the 
natural basis vector of index n+l, the forward 
substitution of this system is not performed on the 
residual vector. 

T;Pis is accomplished by 
(i is the iR$fx of 

APPLICATION TO EXTRACTION CASCADES 

The problem chosen for detailed analysis is found 
as an example in Nuclear Chemical Engineering by 
Benedict, Pigford and Levi [ 2 1 ] .  The problem is the 
separation of zirconium from hafnium discussed by HUr6 
and Saint James 1 2 2 1 .  A zirconium fraction recovery of 
-98 and a decontamination factor of zirconium from 
hafnium of 200 are desired in the extract stream. 
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0 
*n-1 0 

0 

0 

O . l ' . O  0 * .  0 1 0 a .  0 1 0 .. 0 

F R A N T Z  AND V A N  B R U N T  

! 

'n-1 Dj 

Bn Dn 

0 ' *  0 Dm 

1 1- -1 

"m 

Figure 9. Elimination of  the ith Column of the 
Bordered Block System 

Figure 10. Switching Columns of the Block 
Tridiagonal System 
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Interlinked extraction and scrubbing cascades are used 
to accomplish this task. The solution proposed by 
Benedict, Pigford and Levi tears all the material 
balances in each cascade individually, The material 
balance condition around the feed stage is not met in 
their analysis. 

3.0M HNO .123M Zr(N0 ) 4 ,  and .00246M Hf(N0 ) '?Ae 
scrubbind'section has an aqueous feed of 3.0d &O 
3.5M NaNO 
feed containing 2.25M TBP and 1.6M HNO . 
organic feed is 100 liters and the aqu8ous feeds are 
both 48 liters. The problem is illustrated in figure 
11. 

The feed for the column consists o f  3.5M NaNO 

and 
The extraction section receives an o?ganic 

The volume of 

The process chemistry of this problem is given in 
figure 12. Three highly nonlinear mass action equilib- 
ria are required to describe this system. Unlike most 
other solution procedures, a simultaneous convergence 
scheme without scaling, artificial parameters, and 
special treatment converges rapidly to a solution 
(O'Quinn & VanBrunt [ 2 3 ] ) .  In this workl continuation 
methods are applied to the same problem. 

3.OM HN03 
3.5M NaN03 
48.0 liters 

3.0M HN03 
3.5M NaN03 
0.123M Zr 
0.00246M Hf 
48.0 liters 

Figure 11. Z r / H f  Column 
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TBP(0) 

( 0 )  
+ 2TBP 

( 0 )  
+ 2TBP 

Aqueous 
Phase 

Hi, Na' 

zr4+,!4€4+ 

NOS 

1 - HNO3-TBP 
KH = 0.145 

( 0 )  

( 0 )  
Zr(NO3I4-2TBP 

KZr = 0 . 0 0 3 2  

Hf(N03 4-2TBP( o )  

KHf = 0.00032 

Organic 
Phase 

HN03 -TBP 

Zr(N03)4.2TBP 

Hf(N03)4-2TBP 

TBP 

Figure 12. 
Mass Action Equilibria for Zr/Hf Problem. 

The results are shown in table 4 .  They indicate 
the efficiency of the continuation procedure over a 
simultaneous convergence method. The newton homotopy 
converged to the solution quicker and without scaling to 
prevent negative iterates. The fixed point homotopy 
diverged, even though the initial iterate was on a path, 
that path did not have a zero. Excellent results were 
obtained with custom imbedding procedures. It is 
believed that these results indicate the first time that 
a separation process has been converged with a 
continuation method at a rate comparable to a newton 
procedure. 

Following Vickery and Taylor [24], the nonlinear 
term that represents the equilibrium can be gradually 
introduced exponentially( see equation 14). The 
physical reasoning for introducing the nonlinearity in 
this manner is that initially the solutes are introduced 
linearly into an organic phase that is equilibrated with 
the acid. The nonlinearity is gradually introduced. 
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Table 4 .  
Zr - Hf SOLUTION COMPARISON 

Method of Solution Number of Newton 
Steps Corrections 

SC Linearization 5 

SC linearization damped 
to prevent negative 
concentrations 

11 

Newton homotopy 1 4 

Fixed point homotopy failed to 
converge 

Custom homotopy # 1 1 4 

Custom homotopy # 2 1 3 

Specifically limiting the imbedding t o  the 
extractant solution concentration had the most profound 
effects. The resulting solution procedure is imbedded 
with the process chemistry. That is the imbedding is 
according to the extent to which the extractant is 
combined to form each metal complex. 

YZr - 'zr 'NO~YTBP 2t = 0 t E [0,11 ( 1 5 )  

Not only did the procedure converge most rapidly; 
but also the physical chemistry was brought into the 
solution process. Solution from a wide range of starting 
points were examined. In each case, the procedure that 
represented the process chemistry appeared to be the 
most efficient. 

In the specification problem described by O'Quinn 
and Van Brunt [23] a region of reduced convergence was 
obtained for a SC linearization. Using the 
continuation procedure, convergence t o  the solution was 
obtained from a point outside the domain of attraction 
of newton's method. In other words convergence was 
attained from a starting point from which other methods 
would diverge. 

In summary, the method outlined here can be 
contrasted with an SC linearization. First, the 
procedure can obtain multiple solutions, if they exist. 
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264 FRANTZ AND VAN BRUNT 

Second, solution can be obtained from an area outside 
the domain of convergence of an SC method. Third, the 
procedure is capable of converging as rapidly or more 
rapidly than an S C  method. And fourth, the procedure is 
able to include the process chemistry of metal 
complexation in the solution process, All of these 
advantages have been illustrated by the solution 
behavior given in table 4 and discussed above. 

The Purex chemistry described by Jubin [25] 
suggests a similar custom homotopy mapping to the one 
outlined above. Particularly, if the distribution maps 
given f o r  this system are examined in detail, the 
linearity of the nitric acid concentration is markedly 
different from the nonlinear metal chemistry. This 
effect is most noted at low metal concentrations. 

U02 2+ + 2N03+ 2TBP U02(N03)2*2TBP KU 

Pu4++4NO;+ 2TBP $ Pu ( NO3 ) * 2TBP KpU 

KH1 H++ NO; + TBP HNO3-TBP 

H++ NO; + 2TBP $ HN03-2TBP KHz 

The custom homotopy mapping suggested by Purex 
chemistry is 

Y ~ - K X X  2 2(1-t) = 0 
u u NO;TBP 

2(1-t) = 0 
'H2 - KH2XHXN03YTBP 

(16) 

CONCLUSION 

This work developed a robust continuation method 
useful f o r  separation problems. Successful application 
to the solution of hydrometallurgical separations 
revealed that the procedure is capable of converging 
more rapidly than a simultaneous convergence procedure. 
Customized procedures based on the solution chemistry 
were utilized in the most efficient calculation method. 
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a -  

Da - 
e -  
E -  
f -  
F -  
G -  
h -  
H -  
r -  
R -  
t -  

x -  
Y -  

b -  

x -  

NOMENCLATURE 

arbitrary function 
arbitrary function 
Damkbhler number 
the natural basis vector 
arbitrary function vector 
dependant variable 
dependant variable vector 
deformed function, F 
homotopy function 
homotopy function vector 
re s idua 1 
residual vector 
continuation variable 
independent variable 
independent variable vector 
reactant concentration 

subscripts 

0-9 - parameter number 
n - number of  equations 
i,j,k - arbitrary parameter number 

superscripts 

k - iteration number 
-1 - the inverse function 
0 - initial value 
f - final value 
-i - denotes lack of column or element k 

n - number of equations 

greek 

0 - dimensionless temperature 
a ( ) -  partial differentiation 
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